Polynomial approximation of symmetric functions

نویسندگان

چکیده

We study the polynomial approximation of symmetric multivariate functions and multi-set functions. Specifically, we consider f ( x 1 , … N stretchy="false">) f(x_1, \dots , x_N) , where alttext="x i element-of double-struck R Superscript d"> i ∈<!-- ∈ <mml:msup> R d encoding="application/x-tex">x_i \in \mathbb {R}^d alttext="f"> encoding="application/x-tex">f is invariant under permutations its alttext="upper N"> encoding="application/x-tex">N arguments. demonstrate how these symmetries can be exploited to improve cost versus error ratio in a function particular dependence that on alttext="d encoding="application/x-tex">d, N degree. These results are then used construct approximations prove rates for defined multi-sets becomes parameter input.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Approximation of Functions

Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hubert are presented. Using an averaged Taylor series, we represent a function as a polynomial plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer o...

متن کامل

The best uniform polynomial approximation of two classes of rational functions

In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.

متن کامل

Polynomial Approximation of Functions in Sobolev Spaces

Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hubert are presented. Using an averaged Taylor series, we represent a function as a polynomial plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer o...

متن کامل

Random approximation of a general symmetric equation

In this paper, we prove the Hyers-Ulam stability of the symmetric functionalequation $f(ph_1(x,y))=ph_2(f(x), f(y))$ in random normed spaces. As a consequence, weobtain some random stability results in the sense of Hyers-Ulam-Rassias.

متن کامل

A polynomial approximation for arbitrary functions

Abstract We describe an expansion of Legendre polynomials, analogous to the Taylor expansion, to approximate arbitrary functions. We show that the polynomial coefficients in Legendre expansion, thus, the whole series, converge to zero much more rapidly compared to the Taylor expansion of the same order. Furthermore, using numerical analysis with sixth-order polynomial expansion, we demonstrate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2023

ISSN: ['1088-6842', '0025-5718']

DOI: https://doi.org/10.1090/mcom/3868